organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

15β , 16β -Methylene-3-oxo- 17α -pregn-4ene-21,17-carbolactone

Wei Zhou, Wei-Xiao Hu* and Chun-Nian Xia

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Correspondence e-mail: huyang@mail.hz.zj.cn

Received 24 October 2007; accepted 31 October 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.037; wR factor = 0.109; data-to-parameter ratio = 8.4.

In the title compound, $C_{23}H_{30}O_3$, ring A has a sofa conformation, rings B and C have regular chair conformations, and ring D and the carbolactone ring adopt envelope conformations. The crystal packing is stabilized by weak intermolecular $C-H \cdots O$ hydrogen bonding.

Related literature

For a related structure, see: Verma et al. (2006). For synthesis, see: Wlechert et al. (1978).

Experimental

Crystal data

$C_{23}H_{30}O_3$	$V = 1935.7 (16) \text{ Å}^3$
$M_r = 354.47$	Z = 4
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 11.964 (8) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 12.647 (5) Å	T = 295 (2) K
c = 12.793 (4) Å	$0.40 \times 0.35 \times 0.15 \text{ mm}$

Data collection

Enraf-Nonius CAD4	1183 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.028$
Absorption correction: none	3 standard reflections
2175 measured reflections	frequency: 60 min
1989 independent reflections	intensity decay: 0.1%
-	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	238 parameters
$wR(F^2) = 0.109$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
1989 reflections	$\Delta \rho_{\rm min} = -0.12 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
C19-H19C···O3 ⁱ	0.96	2.58	3.540 (5)	177	
Symmetry code: (i) $-x + 1$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.					

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 EXPRESS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997): program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors are indebted to the Science and Technology Bureau of Zhejiang Province for financial support (grant No. 2005C23022).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2349).

References

- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Verma, R., Jasrotia, D., Sawhney, A. & Bhat, M. (2006). J. Chem. Crystallogr. 34, 523-528.
- Wlechert, R., Bittler, D., Kerb, U., Laurent, H., Casals, S. J. & Losert, W. (1978). US Patent No. 4 129 564.

Acta Cryst. (2007). E63, o4584 [doi:10.1107/S1600536807054773]

15β,16β-Methylene-3-oxo-17α-pregn-4-ene-21,17-carbolactone

W. Zhou, W.-X. Hu and C.-N. Xia

Comment

Drospirenone has been known as a new contraceptive drug with the special antimineralocorticoid and antiandrogenic properties, unlike any other progestin available in oral contraceptives. In our new process to synthesize drospirenone, the title compound, (1), has been obtained as an intermediate by the oxidation with cyclohexanone and aluminium isopropylate from the compound (2), 3 β -hydroxy-15 β ,16 β -methylene-5-androstene-[17(β -1')-spiro-5']- perhydrofuran-2' ξ -ol. We report here the crystal structure of (1).

The molecular structure of title molecule is illustrated in Fig. 1. The packing diagram is shown in Fig. 2. In the molecule, the Csp^3 — Csp^3 bond lengths in the steroid nucleus are from 1.511 (6) to 1.557 (4) Å, in good agreement with the values found in the similar steroid (Verma *et al.*, 2006). The double bond length of 1.221 (5) Å for C3=O1 is in accordance with the expected value, while the length of 1.349 (5) Å for the C4=C5 double bond is somewhat longer than the typical value of 1.32 Å, indicating delocalization to some extent with C3=O1 double bond.

The C1-containing six-membered ring displays a 1α -envelope conformation. Atom C2–C5 and C10 form a plane within the deviation of 0.044 (3) and atom C1 lies under the plane by -0.587 (5) Å. The C6-containing six-membered rings and C11-containing ring show regular chair conformations. The C13-containing five-membered ring has a 13 β -envelope conformation, the deviation of C13 from the plane of C14–C17 is 0.617 (5) Å. The three-membered ring makes a dihedral angle of 61.1 (3)° with the C14–C17 plane. In the C21-containing five-membered, the atom C23 deviates from the plane (C17/O2/C21/C22) by 0.438 (7) Å, showing a flater envelope conformation.

As shown in Fig. 2, there exists a weak C—H···O intermolecular hydrogen bond in the crystal structure (Table 1) and the molecules are linked by the hydrogen bonding.

Experimental

The compound (2), 3β -hydroxy- 15β , 16β -methylene-5-androstene- $[17(\beta-1')$ -spiro-5']- perhydrofuran- $2'\xi$ -ol, was prepared *via* three steps from 5,15-androstdiene- 3β -ol-17-one according to the literature method (Wlechert *et al.*, 1978).

The title compound (1) was prepared in the manner discribed below (Scheme 2): a toluene solution (200 ml) of compound (2) (12.5 g, 35 mmol) was mixed with cyclohexanone (28.4 g, 290 mmol) and a toluene solution (100 ml) of aluminium isopropylate (5 g, 25 mmol). The mixture was refluxed untill TLC test showing the reaction complete. The mixture was then diluted with ethyl acetate (50 ml), washed with 200 ml of 1 M sulfuric acid and 200 ml of water in turn. The organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. To the residue was added 30 ml of isopropyl ether, then cooled overnight in a refrigerator to give crystalline compound (1) (8.0 g, yield 64.7%). Single crystals of the compound (1) were obtained by recrystallization from a toluene solution.

Refinement

H atoms bonded to C atoms were placed at calculated positions and refined using a riding model with C—H = 0.93-0.98Å, and $U_{iso}(H) = 1.2$ times (or 1.5 times for methyl H) $U_{eq}(C)$. In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Figures

Fig. 1. The structure of (1) with 30% probability displacement ellipsoids. Fig. 2. Packing diagram of (1), viewed along the b axis, showing hydrogen bonds as dashed lines. For clarity, H atoms have been omitted except for those involved in hydrogen bonding.

15β,16β-Methylene-3-oxo-17α-pregna-4-ene-21,17-carbolactone

Crystal data

$C_{23}H_{30}O_3$	$D_{\rm x} = 1.216 {\rm ~Mg~m}^{-3}$
$M_r = 354.47$	Melting point = $427-429$ K
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 25 reflections
a = 11.964 (8) Å	$\theta = 10.8 - 12.0^{\circ}$
b = 12.647 (5) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 12.793 (4) Å	T = 295 (2) K
$V = 1935.7 (16) \text{ Å}^3$	Prismatic, colourless
Z = 4	$0.40\times0.35\times0.15~mm$
$F_{000} = 768$	

Data collection

Enraf–Nonius CAD4	$R_{int} = 0.028$
diffractometer	11111 0.020
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.2^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.3^{\circ}$

T = 295(2) K	$h = 0 \rightarrow 14$
$\omega/2\theta$ scans	$k = -1 \rightarrow 15$
Absorption correction: none	$l = 0 \rightarrow 15$
2175 measured reflections	3 standard reflections
1989 independent reflections	every 60 min
1183 reflections with $I > 2\sigma(I)$	intensity decay: 0.1%
2175 measured reflections 1989 independent reflections 1183 reflections with $I > 2\sigma(I)$	3 standard reflections every 60 min intensity decay: 0.1%

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^2(F_o^2) + (0.0528P)^2 + 0.1311P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.109$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
1989 reflections	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
238 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.038 (3)

Secondary atom site location: difference Fourier map

Special details

Experimental. IR (KBr, cm⁻¹) 3514, 2945, 1770, 1670, 1612, 1190, 1016, 923, 901, 864, 680, 516. ¹H NMR (CDCl₃) 5.76 (s, 1H, C=CH), 1.03–2.63 (m, 21H), 1.21 (s, 3H, -CH₃), 1.03 (s, 3H, -CH₃), 0.47 (q, 2H, methylene).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O1	-0.2159 (3)	0.9187 (3)	0.1112 (5)	0.196 (3)
O2	0.5682 (2)	0.6374 (2)	0.43323 (19)	0.0708 (8)
O3	0.5940 (3)	0.4708 (3)	0.4846 (2)	0.0979 (11)
C1	0.0138 (3)	0.7426 (3)	0.1572 (3)	0.0579 (9)
H1A	0.0356	0.6732	0.1323	0.070*
H1B	-0.0053	0.7359	0.2305	0.070*
C2	-0.0889 (3)	0.7778 (3)	0.0978 (3)	0.0731 (12)

H2A	-0.0748	0.7719	0.0233	0.088*
H2B	-0.1508	0.7314	0.1149	0.088*
C3	-0.1200 (4)	0.8877 (4)	0.1227 (4)	0.0961 (16)
C4	-0.0318 (3)	0.9583 (3)	0.1544 (3)	0.0738 (12)
H4	-0.0511	1.0275	0.1711	0.089*
C5	0.0768 (3)	0.9308 (3)	0.1615 (3)	0.0535 (9)
C6	0.1659 (3)	1.0119 (3)	0.1788 (3)	0.0634 (10)
H6A	0.1311	1.0792	0.1949	0.076*
H6B	0.2085	1.0205	0.1148	0.076*
C7	0.2457 (3)	0.9819 (3)	0.2677 (3)	0.0598 (10)
H7A	0.3060	1.0329	0.2712	0.072*
H7B	0.2058	0.9839	0.3337	0.072*
C8	0.2943 (3)	0.8713 (2)	0.2511 (2)	0.0449 (8)
H8	0.3425	0.8719	0.1892	0.054*
С9	0.1999 (3)	0.7905 (2)	0.2348 (2)	0.0444 (8)
H9	0.1567	0.7916	0.2999	0.053*
C10	0.1143 (3)	0.8175 (2)	0.1471 (2)	0.0467 (8)
C11	0.2461 (3)	0.6768 (3)	0.2263 (3)	0.0546 (9)
H11A	0.1841	0.6278	0.2199	0.066*
H11B	0.2911	0.6710	0.1635	0.066*
C12	0.3170 (3)	0.6461 (3)	0.3208 (3)	0.0548 (9)
H12A	0 3463	0 5753	0 3112	0.066*
H12B	0.2708	0.6462	0.3832	0.066*
C13	0.4138(3)	0.7240(2)	0.3346(2)	0.0482 (8)
C14	0.3620 (3)	0.8358(2)	0.3451(2)	0.0102(0)
H14	0.3057	0.8272	0.4001	0.061*
C15	0.4509 (3)	0.9039 (3)	0.3963 (3)	0.001 0.0713(12)
H15	0.4268	0.9675	0.4337	0.086*
C16	0.5281 (3)	0.8279 (3)	0.1537 0.4522(3)	0.0800 (13)
H16	0.5509	0.8273	0.5232	0.0000 (13)
C17	0.5507	0.7185 (3)	0.3232	0.050
C18	0.4777(3)	0.7133(3)	0.4370(3)	0.0015(10) 0.0645(11)
U18	0.4921 (3)	0.6387	0.2392 (3)	0.007*
H18R	0.5685	0.7144	0.2612	0.097*
	0.3083	0.7144	0.2012	0.097*
C10	0.4700	0.7004	0.1872 0.0271 (2)	0.097° 0.0623(10)
U19	0.1070 (3)	0.8072 (5)	-0.0146	0.0023 (10)
119A	0.1143	0.8300	-0.0140	0.093*
П19Б	0.1803	0.7547	0.0242	0.095
C20	0.2331	0.8301	0.0333	0.095
	0.5711 (5)	0.8934 (4)	0.3030 (4)	0.0929 (13)
H20A	0.5885	0.8013	0.2997	0.111*
H20B	0.6201	0.9536	0.3839	0.111*
C21	0.5375 (4)	0.5488 (4)	0.4848 (3)	0.0/21(12)
C22	0.4292 (4)	0.5656 (3)	0.5394 (3)	0.0802 (13)
п22А	0.4552	0.5294	0.0113	0.090*
H22B	0.3691	0.5284	0.5042	0.096*
C23	0.4118 (4)	0.6842 (3)	0.5342 (3)	0.0742 (12)
H23A	0.4394	0./184	0.5969	0.089*
H23B	0.3333	0.7012	0.5255	0.089*

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.078 (2)	0.142 (4)	0.370 (8)	0.052 (2)	-0.080 (4)	-0.108 (4)
02	0.0616 (15)	0.0783 (18)	0.0723 (16)	0.0173 (15)	-0.0096 (14)	0.0074 (15)
03	0.108 (2)	0.091 (2)	0.095 (2)	0.047 (2)	-0.0054 (19)	0.0140 (18)
C1	0.048 (2)	0.066 (2)	0.060 (2)	0.0054 (19)	-0.0064 (19)	-0.0075 (19)
C2	0.059 (2)	0.082 (3)	0.079 (3)	0.010 (2)	-0.014 (2)	-0.016 (2)
C3	0.059 (2)	0.099 (4)	0.130 (4)	0.031 (3)	-0.025 (3)	-0.033 (3)
C4	0.070 (3)	0.065 (2)	0.087 (3)	0.026 (2)	-0.011 (2)	-0.019 (2)
C5	0.055 (2)	0.056 (2)	0.049 (2)	0.0097 (18)	-0.0015 (19)	0.0020 (17)
C6	0.071 (2)	0.051 (2)	0.068 (2)	0.015 (2)	-0.002 (2)	0.003 (2)
C7	0.064 (2)	0.0417 (19)	0.073 (2)	0.0032 (19)	-0.006 (2)	-0.0055 (18)
C8	0.0448 (17)	0.0428 (18)	0.0472 (18)	0.0042 (16)	0.0000 (16)	-0.0013 (16)
C9	0.0508 (19)	0.0405 (19)	0.0418 (17)	0.0030 (17)	0.0034 (16)	-0.0039 (14)
C10	0.0447 (18)	0.0488 (19)	0.0467 (18)	0.0099 (17)	-0.0009 (16)	-0.0063 (16)
C11	0.055 (2)	0.0464 (19)	0.062 (2)	0.0003 (18)	-0.0076 (19)	-0.0027 (17)
C12	0.061 (2)	0.0485 (19)	0.055 (2)	0.0083 (19)	-0.0062 (18)	0.0003 (18)
C13	0.049 (2)	0.0505 (19)	0.0454 (18)	0.0027 (17)	-0.0033 (18)	-0.0024 (17)
C14	0.0540 (19)	0.0471 (19)	0.0512 (18)	-0.0006 (17)	-0.0006 (17)	-0.0043 (17)
C15	0.076 (3)	0.056 (2)	0.082 (3)	0.003 (2)	-0.025 (2)	-0.013 (2)
C16	0.081 (3)	0.073 (3)	0.086 (3)	-0.003 (3)	-0.038 (3)	-0.010 (2)
C17	0.063 (2)	0.063 (2)	0.058 (2)	0.014 (2)	-0.007 (2)	-0.0036 (19)
C18	0.060 (2)	0.074 (3)	0.060 (2)	0.012 (2)	-0.001 (2)	0.0005 (19)
C19	0.066 (2)	0.070 (3)	0.0507 (18)	0.016 (2)	-0.002 (2)	-0.0015 (18)
C20	0.067 (3)	0.080 (3)	0.132 (4)	-0.018 (2)	-0.021 (3)	0.007 (3)
C21	0.082 (3)	0.079 (3)	0.056 (2)	0.021 (3)	-0.011 (2)	0.009 (2)
C22	0.100 (3)	0.084 (3)	0.057 (2)	0.023 (3)	-0.001 (3)	0.015 (2)
C23	0.087 (3)	0.086 (3)	0.049 (2)	0.022 (3)	-0.006 (2)	0.000 (2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

O1—C3	1.221 (5)	C11—H11B	0.9700
O2—C21	1.351 (5)	C12—C13	1.531 (5)
O2—C17	1.473 (4)	C12—H12A	0.9700
O3—C21	1.195 (5)	C12—H12B	0.9700
C1—C2	1.512 (5)	C13—C17	1.538 (5)
C1—C10	1.536 (5)	C13—C14	1.550 (4)
C1—H1A	0.9700	C13—C18	1.551 (5)
C1—H1B	0.9700	C14—C15	1.517 (5)
C2—C3	1.474 (6)	C14—H14	0.9800
C2—H2A	0.9700	C15—C20	1.493 (6)
C2—H2B	0.9700	C15—C16	1.512 (6)
C3—C4	1.441 (6)	C15—H15	0.9800
C4—C5	1.349 (5)	C16—C20	1.489 (6)
C4—H4	0.9300	C16—C17	1.511 (5)
C5—C6	1.496 (5)	C16—H16	0.9800
C5—C10	1.513 (5)	C17—C23	1.543 (5)

C6—C7	1.533 (5)	C18—H18A	0.9599
С6—Н6А	0.9700	C18—H18B	0.9599
С6—Н6В	0.9700	C18—H18C	0.9599
С7—С8	1.530 (5)	C19—H19A	0.9599
С7—Н7А	0.9700	C19—H19B	0.9599
С7—Н7В	0.9700	С19—Н19С	0.9599
C8—C14	1.518 (4)	C20—H20A	0.9700
C8—C9	1.537 (4)	C20—H20B	0.9700
С8—Н8	0.9800	C21—C22	1.487 (6)
C9—C11	1.544 (4)	C22—C23	1.516 (6)
C9—C10	1.557 (4)	C22—H22A	0.9700
С9—Н9	0.9800	C22—H22B	0.9700
C10-C19	1.548 (4)	C23—H23A	0.9700
C11—C12	1.527 (4)	C23—H23B	0.9700
C11—H11A	0.9700		
C21—O2—C17	111.4 (3)	C12—C13—C17	117.3 (3)
C2-C1-C10	114.4 (3)	C12—C13—C14	107.1 (3)
C2—C1—H1A	108.7	C17—C13—C14	99.9 (3)
C10-C1-H1A	108.7	C12—C13—C18	106.4 (3)
C2—C1—H1B	108.7	C17—C13—C18	110.9 (3)
C10-C1-H1B	108.7	C14—C13—C18	115.5 (3)
H1A—C1—H1B	107.6	C15—C14—C8	123.3 (3)
C3—C2—C1	112.0 (4)	C15—C14—C13	105.9 (3)
C3—C2—H2A	109.2	C8—C14—C13	114.4 (3)
C1—C2—H2A	109.2	C15—C14—H14	103.6
С3—С2—Н2В	109.2	C8—C14—H14	103.6
C1—C2—H2B	109.2	C13—C14—H14	103.6
H2A—C2—H2B	107.9	C20-C15-C16	59.4 (3)
O1—C3—C4	121.5 (4)	C20—C15—C14	121.4 (4)
O1—C3—C2	120.9 (5)	C16-C15-C14	105.8 (3)
C4—C3—C2	117.4 (4)	С20—С15—Н15	118.1
C5—C4—C3	124.3 (4)	C16—C15—H15	118.1
С5—С4—Н4	117.8	C14—C15—H15	118.1
C3—C4—H4	117.8	C20-C16-C15	59.7 (3)
C4—C5—C6	121.3 (3)	C20-C16-C17	124.4 (4)
C4—C5—C10	121.5 (3)	C15-C16-C17	106.9 (3)
C6—C5—C10	117.1 (3)	С20—С16—Н16	116.7
C5—C6—C7	112.6 (3)	C15—C16—H16	116.7
С5—С6—Н6А	109.1	C17—C16—H16	116.7
С7—С6—Н6А	109.1	O2—C17—C16	111.7 (3)
С5—С6—Н6В	109.1	O2—C17—C13	111.6 (3)
С7—С6—Н6В	109.1	C16—C17—C13	105.1 (3)
H6A—C6—H6B	107.8	O2—C17—C23	102.3 (3)
C8—C7—C6	111.1 (3)	C16—C17—C23	111.1 (3)
С8—С7—Н7А	109.4	C13—C17—C23	115.3 (3)
С6—С7—Н7А	109.4	C13—C18—H18A	109.5
С8—С7—Н7В	109.4	C13—C18—H18B	109.5
С6—С7—Н7В	109.4	H18A—C18—H18B	109.5
H7A—C7—H7B	108.0	C13—C18—H18C	109.5

C14—C8—C7	111.2 (3)	H18A—C18—H18C	109.5
C14—C8—C9	107.6 (3)	H18B—C18—H18C	109.5
С7—С8—С9	110.3 (3)	С10—С19—Н19А	109.5
С14—С8—Н8	109.2	С10—С19—Н19В	109.5
С7—С8—Н8	109.2	H19A—C19—H19B	109.5
С9—С8—Н8	109.2	С10—С19—Н19С	109.5
C8—C9—C11	111.4 (3)	H19A—C19—H19C	109.5
C8—C9—C10	115.8 (3)	H19B—C19—H19C	109.5
C11—C9—C10	112.9 (3)	C16—C20—C15	60.9 (3)
С8—С9—Н9	105.2	С16—С20—Н20А	117.7
С11—С9—Н9	105.2	С15—С20—Н20А	117.7
С10—С9—Н9	105.2	С16—С20—Н20В	117.7
C5-C10-C1	109.9 (3)	С15—С20—Н20В	117.7
C5-C10-C19	108.1 (3)	H20A—C20—H20B	114.8
C1-C10-C19	110.1 (3)	O3—C21—O2	121.9 (4)
C5—C10—C9	108.4 (3)	O3—C21—C22	127.7 (4)
C1—C10—C9	108.6 (3)	O2—C21—C22	110.3 (4)
С19—С10—С9	111.7 (2)	C21—C22—C23	103.9 (4)
C12—C11—C9	112.3 (3)	C21—C22—H22A	111.0
C12—C11—H11A	109.1	C23—C22—H22A	111.0
C9—C11—H11A	109.1	C21—C22—H22B	111.0
C12—C11—H11B	109.1	C23—C22—H22B	111.0
C9—C11—H11B	109.1	H22A—C22—H22B	109.0
H11A—C11—H11B	107.9	C22—C23—C17	103.9 (3)
C11—C12—C13	110.3 (3)	С22—С23—Н23А	111.0
C11—C12—H12A	109.6	С17—С23—Н23А	111.0
C13—C12—H12A	109.6	С22—С23—Н23В	111.0
C11—C12—H12B	109.6	С17—С23—Н23В	111.0
C13—C12—H12B	109.6	H23A—C23—H23B	109.0
H12A—C12—H12B	108.1		
C10—C1—C2—C3	-52.0 (5)	C12—C13—C14—C15	160.2 (3)
C1—C2—C3—O1	-155.9 (6)	C17—C13—C14—C15	37.5 (3)
C1—C2—C3—C4	28.0 (6)	C18-C13-C14-C15	-81.5 (4)
O1—C3—C4—C5	-175.3 (6)	C12—C13—C14—C8	-60.6 (3)
C2—C3—C4—C5	0.8 (7)	C17—C13—C14—C8	176.6 (3)
C3—C4—C5—C6	170.4 (4)	C18—C13—C14—C8	57.6 (4)
C3—C4—C5—C10	-6.5 (7)	C8—C14—C15—C20	-93.2 (5)
C4—C5—C6—C7	130.7 (4)	C13—C14—C15—C20	41.3 (5)
C10—C5—C6—C7	-52.2 (4)	C8—C14—C15—C16	-156.7 (3)
C5—C6—C7—C8	53.3 (4)	C13-C14-C15-C16	-22.1 (4)
C6—C7—C8—C14	-173.1 (3)	C14—C15—C16—C20	117.5 (4)
C6—C7—C8—C9	-53.7 (4)	C20—C15—C16—C17	-120.4 (4)
C14—C8—C9—C11	-54.1 (3)	C14—C15—C16—C17	-2.9 (4)
C7—C8—C9—C11	-175.6 (3)	C21—O2—C17—C16	140.6 (3)
C14—C8—C9—C10	175.1 (2)	C21—O2—C17—C13	-102.1 (3)
C7—C8—C9—C10	53.6 (3)	C21—O2—C17—C23	21.7 (4)
C4C5C10C1	-16.6 (5)	C20—C16—C17—O2	83.6 (4)
C6C5C10C1	166.3 (3)	C15—C16—C17—O2	148.1 (3)
C4—C5—C10—C19	103.5 (4)	C20-C16-C17-C13	-37.5 (5)

C6—C5—C10—C19	-73.5 (4)	C15-C16-C17-C13	26.9 (4)
C4—C5—C10—C9	-135.2 (4)	C20-C16-C17-C23	-162.8 (4)
C6—C5—C10—C9	47.7 (4)	C15—C16—C17—C23	-98.4 (4)
C2-C1-C10-C5	45.5 (4)	C12—C13—C17—O2	84.5 (4)
C2-C1-C10-C19	-73.5 (4)	C14—C13—C17—O2	-160.2 (3)
C2-C1-C10-C9	164.0 (3)	C18—C13—C17—O2	-37.9 (4)
C8—C9—C10—C5	-48.6 (3)	C12-C13-C17-C16	-154.2 (3)
C11—C9—C10—C5	-178.7 (3)	C14—C13—C17—C16	-39.0 (3)
C8—C9—C10—C1	-168.0 (3)	C18-C13-C17-C16	83.3 (3)
C11—C9—C10—C1	61.9 (3)	C12—C13—C17—C23	-31.6 (4)
C8—C9—C10—C19	70.4 (3)	C14—C13—C17—C23	83.7 (3)
C11-C9-C10-C19	-59.7 (4)	C18—C13—C17—C23	-154.0 (3)
C8—C9—C11—C12	55.7 (4)	C17—C16—C20—C15	90.5 (4)
C10-C9-C11-C12	-172.0 (3)	C14-C15-C20-C16	-90.5 (4)
C9—C11—C12—C13	-57.3 (4)	C17—O2—C21—O3	174.8 (4)
C11—C12—C13—C17	168.3 (3)	C17—O2—C21—C22	-6.1 (4)
C11—C12—C13—C14	57.1 (3)	O3—C21—C22—C23	166.5 (4)
C11—C12—C13—C18	-67.0 (3)	O2—C21—C22—C23	-12.5 (4)
C7—C8—C14—C15	-49.0 (4)	C21—C22—C23—C17	24.9 (4)
C9—C8—C14—C15	-170.0 (3)	O2—C17—C23—C22	-28.0 (4)
C7—C8—C14—C13	179.7 (3)	C16—C17—C23—C22	-147.3 (3)
C9—C8—C14—C13	58.8 (3)	C13—C17—C23—C22	93.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C19—H19C…O3 ⁱ	0.96	2.58	3.540 (5)	177
Symmetry codes: (i) $-x+1$, $y+1/2$, $-z+1/2$.				

Fig. 1

